GATE 2014 Examination
MT: Metallurgical Engineering

Duration: 180 minutes **Maximum Marks:** 100

Read the following instructions carefully.

1. To login, enter your Registration Number and password provided to you. Kindly go through the various symbols used in the test and understand their meaning before you start the examination.
2. Once you login and after the start of the examination, you can view all the questions in the question paper, by clicking on the View All Questions button in the screen.
3. This question paper consists of 2 sections, General Aptitude (GA) for 15 marks and the subject specific GATE paper for 85 marks. Both these sections are compulsory.
 - The GA section consists of 10 questions. Question numbers 1 to 5 are of 1-mark each, while question numbers 6 to 10 are of 2-mark each.
 - The subject specific GATE paper section consists of 55 questions, out of which question numbers 1 to 25 are of 1-mark each, while question numbers 26 to 55 are of 2-mark each.
4. Depending upon the GATE paper, there may be useful common data that may be required for answering the questions. If the paper has such useful data, the same can be viewed by clicking on the Useful Common Data button that appears at the top, right hand side of the screen.
5. The computer allotted to you at the examination center runs specialized software that permits only one answer to be selected for multiple-choice questions using a mouse and to enter a suitable number for the numerical answer type questions using the virtual keyboard and mouse.
6. Your answers shall be updated and saved on a server periodically and also at the end of the examination. The examination will stop automatically at the end of 180 minutes.
7. In each paper a candidate can answer a total of 65 questions carrying 100 marks.
8. The question paper may consist of questions of multiple choice type (MCQ) and numerical answer type.
9. Multiple choice type questions will have four choices against A, B, C, D, out of which only ONE is the correct answer. The candidate has to choose the correct answer by clicking on the bubble (○) placed before the choice.
10. For numerical answer type questions, each question will have a numerical answer and there will not be any choices. For these questions, the answer should be entered by using the virtual keyboard that appears on the monitor and the mouse.
11. All questions that are not attempted will result in zero marks. However, wrong answers for multiple choice type questions (MCQ) will result in NEGATIVE marks. For all MCQ questions a wrong answer will result in deduction of ⅓ marks for a 1-mark question and ⅔ marks for a 2-mark question.
12. There is NO NEGATIVE MARKING for questions of NUMERICAL ANSWER TYPE.
13. Non-programmable type Calculator is allowed. Charts, graph sheets, and mathematical tables are NOT allowed in the Examination Hall. You must use the Scribble pad provided to you at the examination centre for all your rough work. The Scribble Pad has to be returned at the end of the examination.

Declaration by the candidate:

“I have read and understood all the above instructions. I have also read and understood clearly the instructions given on the admit card and shall follow the same. I also understand that in case I am found to violate any of these instructions, my candidature is liable to be cancelled. I also confirm that at the start of the examination all the computer hardware allotted to me are in proper working condition”.”
Q. 1 – Q. 5 carry one mark each.

Q.1 A student is required to demonstrate a high level of **comprehension** of the subject, especially in the social sciences.

The word closest in meaning to **comprehension** is
(A) understanding (B) meaning (C) concentration (D) stability

Q.2 Choose the most appropriate word from the options given below to complete the following sentence.

One of his biggest ______ was his ability to forgive.
(A) vice (B) virtues (C) choices (D) strength

Q.3 Rajan was not happy that Sajan decided to do the project on his own. On observing his unhappiness, Sajan explained to Rajan that he preferred to work independently.

Which one of the statements below is logically valid and can be inferred from the above sentences?
(A) Rajan has decided to work only in a group.
(B) Rajan and Sajan were formed into a group against their wishes.
(C) Sajan had decided to give in to Rajan’s request to work with him.
(D) Rajan had believed that Sajan and he would be working together.

Q.4 If \(y = 5x^2 + 3 \), then the tangent at \(x = 0, y = 3 \)

(A) passes through \(x = 0, y = 0 \) (B) has a slope of +1
(C) is parallel to the \(x \)-axis (D) has a slope of −1

Q.5 A foundry has a fixed daily cost of Rs 50,000 whenever it operates and a variable cost of Rs 800\(Q \), where \(Q \) is the daily production in tonnes. What is the cost of production in Rs per tonne for a daily production of 100 tonnes?

Q. 6 – Q. 10 carry two marks each.

Q.6 Find the odd one in the following group: ALRVX, EPVZB, ITZDF, OYEIK

(A) ALRVX (B) EPVZB (C) ITZDF (D) OYEIK

Q.7 Anuj, Bhola, Chandan, Dilip, Eswar and Faisal live on different floors in a six-storeyed building (the ground floor is numbered 1, the floor above it 2, and so on). Anuj lives on an even-numbered floor. Bhola does not live on an odd numbered floor. Chandan does not live on any of the floors below Faisal’s floor. Dilip does not live on floor number 2. Eswar does not live on a floor immediately above or immediately below Bhola. Faisal lives three floors above Dilip. Which of the following floor-person combinations is correct?

<table>
<thead>
<tr>
<th></th>
<th>Anuj</th>
<th>Bhola</th>
<th>Chandan</th>
<th>Dilip</th>
<th>Eswar</th>
<th>Faisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(B)</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(C)</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>(D)</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Q.8 The smallest angle of a triangle is equal to two thirds of the smallest angle of a quadrilateral. The ratio between the angles of the quadrilateral is 3:4:5:6. The largest angle of the triangle is twice its smallest angle. What is the sum, in degrees, of the second largest angle of the triangle and the largest angle of the quadrilateral?

Q.9 One percent of the people of country X are taller than 6 ft. Two percent of the people of country Y are taller than 6 ft. There are thrice as many people in country X as in country Y. Taking both countries together, what is the percentage of people taller than 6 ft?

(A) 3.0 (B) 2.5 (C) 1.5 (D) 1.25

Q.10 The monthly rainfall chart based on 50 years of rainfall in Agra is shown in the following figure. Which of the following are true? (k percentile is the value such that k percent of the data fall below that value)

(i) On average, it rains more in July than in December
(ii) Every year, the amount of rainfall in August is more than that in January
(iii) July rainfall can be estimated with better confidence than February rainfall
(iv) In August, there is at least 500 mm of rainfall

(A) (i) and (ii) (B) (i) and (iii)
(C) (ii) and (iii) (D) (iii) and (iv)

END OF THE QUESTION PAPER
Q. 1 – Q. 25 carry one mark each.

Q.1 Which one of the following factors is NOT desirable for effective phosphorus removal in BOF steelmaking process?
(A) Higher FeO level in slag
(B) Higher basicity
(C) Higher temperature
(D) Lower temperature

Q.2 Which one of the following microstructures of a Ni-base superalloy imparts the highest creep resistance?
(A) Fine grained equiaxed
(B) Coarse grained equiaxed
(C) Columnar
(D) Single crystal

Q.3 Which one of the following plots relating shear stress with strain rate represents Newtonian behaviour of a fluid?

![Shear stress vs Strain rate graph]

(A) P (B) Q (C) R (D) S

Q.4 The respective units for dislocation density and stress intensity factor are
(A) m$^{-2}$ and MPa.m (B) m$^{-2}$ and MPa.m$^{1/2}$ (C) m$^{-2}$ and MPa.m$^{1/2}$ (D) m$^{-2}$ and MPa.m

Q.5 Which one of the following is NOT an intensive property?
(A) Temperature (B) Pressure (C) Volume (D) Refractive index
Q.6 Identify the wave equation among the following equations.
 (A) \(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \)
 (B) \(\frac{\partial^2 f}{\partial x^2} = A \frac{\partial f}{\partial t} \)
 (C) \(\frac{\partial^2 f}{\partial x^2} = A^2 \frac{\partial^2 f}{\partial t^2} \)
 (D) \(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} = 0 \)

Q.7 Which one of the following metal forming processes is the earing defect associated with?
 (A) Deep drawing
 (B) Rolling
 (C) Forging
 (D) Wire drawing

Q.8 The Pilling-Bedworth ratio is defined as
 (A) the molar weight of an oxide divided by the molar weight of the metal consumed in oxide formation.
 (B) the volume of the oxide divided by the volume of the metal consumed in oxide formation.
 (C) the density of the oxide divided by the density of the metal consumed in oxide formation.
 (D) the molar Gibbs energy of the oxide divided by the Gibbs energy of the metal consumed in oxide formation.

Q.9 A tensile specimen was deformed at a constant crosshead speed of 6 mm/min. The strain rate at the start of the testing was \(5 \times 10^{-3} \text{ s}^{-1} \). The initial gauge length of the specimen (in mm) was _______

Q.10 If all the elements of one row of a \(3 \times 3 \) matrix are multiplied by 3, the determinant of the matrix changes by a factor of _______

Q.11 As mercury is cooled from room temperature to 3 K, its electrical behaviour changes from that of
 (A) conductor to insulator
 (B) semiconductor to insulator
 (C) conductor to superconductor
 (D) semiconductor to superconductor

Q.12 Which one of the following refers to the ability of a material to absorb energy when deformed elastically?
 (A) Toughness
 (B) Fracture toughness
 (C) Resilience
 (D) Hardness

Q.13 In the trapezoidal rule for numerical integration of a function, the nature of approximation used for the function in each interval is
 (A) constant
 (B) linear
 (C) parabolic
 (D) cubic
Q.14 Which one of the following NDT techniques CANNOT be used to detect an internal crack in a steel shaft?

(A) Liquid penetrant inspection (B) Radiography
(C) Ultrasonic testing (D) X-ray tomography

Q.15 Two identical engineering components are made from alloys X and Y. The K_{IC} of alloy X is greater than that of alloy Y. If these components are subjected to the same stress during operation under Mode I loading, which one of the following statements is TRUE?

(A) Component made from alloy X can tolerate a larger flaw size compared to that made from Y
(B) Component made from alloy Y can tolerate a larger flaw size compared to that made from X
(C) Both can tolerate same flaw size
(D) None of the above

Q.16 Which one of the following minerals is a source of titanium?

(A) Haematite (B) Magnetite (C) Ilmenite (D) Pyrolusite

Q.17 A steel rod was subjected to a fluctuating stress cycle that varied between a maximum of 400 MPa in tension to a minimum of 300 MPa in compression. What is the stress amplitude, in MPa?

Q.18 Which one of the following can avoid weld decay of austenite stainless steels?

(A) Reducing carbon content
(B) Increasing carbon content
(C) Eliminating strong carbide formers
(D) Decreasing chromium content

Q.19 Identify the INCORRECT statement with respect to grain growth.

(A) As the average grain size increases, the grain boundary energy per unit area decreases.
(B) The driving force for grain growth is the decrease in grain boundary energy per unit volume of the material.
(C) Higher the temperature, the faster is the grain growth.
(D) Impurity atoms segregated at grain boundaries can retard grain growth.

Q.20 Identify the type of the following invariant reaction:

\[\text{liquid 1 + solid 1 } \rightleftharpoons \text{solid 2} \]

(A) Eutectic (B) Eutectoid (C) Peritectic (D) Peritectoid

Q.21 What is the median value of the following set of numbers? __________

1, 3, 5, 9, 6, 4, 8.
Q.22 Which one of the following welding processes uses a non-consumable electrode?
(A) Gas tungsten arc welding
(B) Gas metal arc welding
(C) Submerged arc welding
(D) Flux cored arc welding

Q.23 Which one of the following processes is performed for inclusion modification in ladle metallurgy of steelmaking?
(A) Aluminum wire injection
(B) Calcium wire injection
(C) Oxygen top blowing
(D) Oxygen bottom blowing

Q.24 If a vector \(\mathbf{\hat{a}} \) is defined as gradient of a scalar field \(\varphi \) such that \(\mathbf{\hat{a}} = \nabla \varphi \), then which one of the following is equal to the curl of \(\mathbf{\hat{a}} \)?
(A) \(\nabla^2 \varphi \)
(B) 0
(C) \(\nabla \varphi \)
(D) \(\varphi \)

Q.25 Which one of the following signals from a specimen is used in a scanning electron microscope to get quantitative elemental analysis?
(A) Secondary electrons
(B) Backscattered electrons
(C) X-rays
(D) Transmitted electrons

Q.26 – Q.55 carry two marks each.

Q.26 A metal powder with an apparent density of 2.5 g/cm\(^3\) was compacted in a cylindrical die to a green density of 5.5 g/cm\(^3\). If the height of the green sample was 12 mm, then the fill height of powder (in mm) would have been _______

Q.27 A tensile specimen was deformed to a true strain of 0.405. The change in the gauge length was 5 mm. The final gauge length of the specimen, in mm, is
(A) 10
(B) 12
(C) 15
(D) 18

Q.28 If \(\mathbf{r} \) is a position vector relative to the origin in three dimensional space, then \(\nabla \cdot \mathbf{r} \) is
(A) 0
(B) 1
(C) 2
(D) 3

Q.29 The activity coefficient of Q in a liquid Q-R alloy is represented by the following equation at a fixed temperature.

\[
\ln \gamma_Q = 0.6x_R^2 - 0.2x_R^3
\]

What is the activity of Q in an alloy of composition \(x_R = 0.6 \) at the same temperature? _______
Q.30 Two Cu-Ni alloys, one with 47 wt.% Ni and the other with 53 wt.% Ni, are kept in separate crucibles and are allowed to equilibrate at the same temperature T_1 between the liquidus and the solidus. The two alloys have

(A) the same weight fraction of the liquid but the liquid compositions are different.
(B) the same composition of the liquid but the weight fractions of the liquid are different.
(C) the same weight fractions of the liquid and the solid.
(D) different compositions and weight fractions of the liquid.

Q.31 Dissociation of a dislocation into two partials in an FCC metal is given by the following equation.

$$\frac{a}{2}[1\overline{1}0] \rightarrow \frac{a}{6}[2\overline{1}1] + \frac{a}{6}[1\overline{2}1]$$

On which plane do these two partial dislocations lie?

(A) $\overline{1}1\overline{1}$ (B) $1\overline{1}1$ (C) $1\overline{1}1$ (D) $\overline{1}1\overline{1}$

Q.32 Match the types of corrosion in Group I with their examples in Group II.

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Galvanic corrosion</td>
<td>1. Season cracking in brass</td>
</tr>
<tr>
<td>Q. Filiform corrosion</td>
<td>2. Nut-bolt assembly with gasket</td>
</tr>
<tr>
<td>R. Stress corrosion cracking</td>
<td>3. Brass fittings joined with lead-tin solder</td>
</tr>
<tr>
<td>S. Crevice corrosion</td>
<td>4. Painted food can</td>
</tr>
</tbody>
</table>

(A) P-4, Q-1, R-2, S-3 (B) P-3, Q-1, R-4, S-2
(C) P-3, Q-4, R-1, S-2 (D) P-3, Q-2, R-3, S-1

Q.33 What is the theoretical requirement of air (in m3 at STP) for the complete combustion of 100 m3 (at STP) of a fuel consisting of pure CH$_4$? Assume that air contains 21 vol.% of oxygen. _______

Q.34 An electrolytic refining cell for copper consists of an alloy with activity of copper $a_{Cu} = 0.8$ as the anode, and pure copper as the cathode. What is the absolute value of the cell potential (in millivolts) at 25°C, given that copper is divalent? Faraday constant is 96500 C/mol and the universal gas constant is 8.314 J/(mol.K). _______

Q.35 Match the alloy names listed in Group I with the main elements present in them listed in Group II.

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Babbit</td>
<td>1. Fe-Ni</td>
</tr>
<tr>
<td>Q. Muntz metal</td>
<td>2. Ni-Cr-Fe</td>
</tr>
<tr>
<td>R. Invar</td>
<td>3. Cu-Zn</td>
</tr>
<tr>
<td>S. Inconel</td>
<td>4. Sn-Sb-Cu</td>
</tr>
</tbody>
</table>

(A) P-3, Q-1, R-4, S-2 (B) P-3, Q-4, R-1, S-2
(C) P-4, Q-1, R-2, S-3 (D) P-4, Q-3, R-1, S-2
Q.36 What is the hydrostatic stress for the state of stress represented by σ_{ij} given below? ______

$$
\sigma_{ij} = \begin{bmatrix}
100 & 50 & 50 \\
50 & 125 & 75 \\
50 & 75 & 75
\end{bmatrix}
$$

Q.37 Assume that Sievert’s law holds for solubility of hydrogen dissolved in a thin metal foil. If the partial pressure of hydrogen in contact with the foil is increased by a factor of 4, the solubility increases by a factor of ______

Q.38 A body starts yielding when it is subjected to a stress state with principal stresses of 250 MPa, 50 MPa and –50 MPa. What is the yield strength of the material, in MPa, if Tresca yield criterion is obeyed? ______

Q.39 Determine the correctness or otherwise of the following Assertion (a) and Reason (r):

Assertion (a): Deoxidation and decarburisation of liquid steel are done by vacuum treatment process.

Reason (r): Decreased partial pressure of CO(g) promotes deoxidation and decarburisation.

(A) a is false but r is true
(B) a is true but r is false
(C) a is true and r is also true, but r is not the reason for a
(D) a is true and r is also true, and r is the reason for a

Q.40 In a sand casting of a rectangular slab, the thickness of the solidified layer after 2 minutes is known to be 3 cm. Based on Chvorinov’s rule, the solidified thickness (in cm) after 4 minutes is ______

Q.41 A rod of a metal with Young’s modulus of 200 GPa is pulled in tension to a stress of 400 MPa. What is the elastic strain (in %) that is recovered, when the rod is completely unloaded? ______

Q.42 Match the following strengthening methods (Group I) in metallic alloys with typical mechanisms responsible (Group II) for them.

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Grain size strengthening</td>
<td>1. Orowan looping</td>
</tr>
<tr>
<td>Q. Work hardening</td>
<td>2. Suzuki interaction</td>
</tr>
<tr>
<td>R. Dispersion strengthening</td>
<td>3. Lomer-Cottrell barrier</td>
</tr>
<tr>
<td>S. Solid solution hardening</td>
<td>4. Dislocation pileup at grain boundaries</td>
</tr>
</tbody>
</table>

(A) P-3, Q-4, R-2, S-1
(B) P-3, Q-2, R-1, S-4
(C) P-4, Q-3, R-1, S-2
(D) P-4, Q-1, R-3, S-2
Q.43 Match the operations listed in **Group I** with the types of processes listed in **Group II**.

Group I
- P. Blast Furnace Ironmaking
- Q. BOF Steelmaking
- R. Hall-Heroult Process
- S. Bayer Process

Group II
- 1. Refining
- 2. Electrolysis
- 3. Smelting
- 4. Leaching

(A) P-1, Q-3, R-2, S-4
(B) P-3, Q-1, R-2, S-4
(C) P-4, Q-2, R-3, S-1
(D) P-3, Q-1, R-4, S-2

Q.44 Determine the correctness or otherwise of the following **Assertion (a)** and **Reason (r)**.

Assertion (a): Peak aging time for an Al-4 wt.% Cu alloy is indicated by a maximum in the hardness.

Reason (r): The maximum volume fraction of the θ precipitates is formed at the peak aging time.

(A) a is true but r is false
(B) a is false but r is true
(C) both a and r are true, and r is the reason for a
(D) both a and r are true, but r is not the reason for a

Q.45 Consider a steady state heat flux across a rectangular slab composed of two layers of equal width as shown in the figure below. The thermal conductivities are in the ratio of \(\frac{k_2}{k_1} = 10 \). If the first layer experiences a temperature drop \((T_1 - T_2)\) of 50 K, what is the temperature drop \((T_2 - T_3)\), in K, across the second layer? _______

![Diagram](https://www.freshers.net)

Q.46 Determine the correctness or otherwise of the following **Assertion (a)** and **Reason (r)**.

Assertion (a): During welding of aluminium alloys by the gas tungsten arc welding process, direct current reverse polarity (DCRP) mode is used.

Reason (r): DCRP facilitates breaking up of the oxide film on the workpiece surface.

(A) a is true but r is false
(B) a is false but r is true
(C) both a and r are true, and r is the reason for a
(D) both a and r are true, but r is not the reason for a
Q.47 Match the elements in **Group I** with their corresponding crystal structures in **Group II**.

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Tungsten</td>
<td>1. HCP</td>
</tr>
<tr>
<td>Q. Nickel</td>
<td>2. Simple cubic</td>
</tr>
<tr>
<td>R. Magnesium</td>
<td>3. BCC</td>
</tr>
<tr>
<td>S. Polonium</td>
<td>4. FCC</td>
</tr>
</tbody>
</table>

(A) P-2, Q-1, R-4, S-3 (B) P-3, Q-4, R-1, S-2
(C) P-4, Q-2, R-3, S-1 (D) P-3, Q-4, R-2, S-1

Q.48 The atomic radius of aluminium is 1.431 Å. The interplanar spacing of (111) planes in aluminium, in Å, is ________

Q.49 The flow curve of an annealed metal is expressed as \(\sigma = 200\varepsilon^{0.25} \), where \(\sigma \) is in MPa. If a rod of this metal is subjected to a true strain of \(\varepsilon = 0.3 \) by extrusion, the ideal plastic work of deformation per unit volume (in MJ/m\(^3\)) is ________

Q.50 Two phases \(\alpha \) and \(\beta \) are in thermodynamic equilibrium. If \(x \) and \(y \) are the only components present in the phases \(\alpha \) and \(\beta \) and if \(\mu_i^j \) represents the chemical potential of component \(i \) in phase \(j \), then the condition for equilibrium is

(A) \(\mu_x^\alpha = \mu_x^\beta \) and \(\mu_y^\alpha = \mu_y^\beta \)

(B) \(\mu_y^\beta = \mu_x^\alpha \) and \(\mu_z^\beta = \mu_z^\alpha \)

(C) \(\mu_x^\alpha = \mu_x^\beta \) and \(\mu_y^\alpha = \mu_y^\beta \)

(D) \(\mu_x^\alpha = \mu_y^\alpha \) and \(\mu_x^\beta = \mu_y^\beta \)

Q.51 The important factors for producing low silicon pig iron in a blast furnace are

(A) higher temperature and higher basicity

(B) lower temperature and lower basicity

(C) lower temperature and higher basicity

(D) higher temperature and lower basicity

Q.52 The following power series \(P(x) \) will converge absolutely if \(|x| \) is less than:

\[
P(x) = \sum_{n=0}^{\infty} 4^n x^n
\]

(A) 0.25 (B) 0.5 (C) 2 (D) 4

Q.53 The specific heat \((C_p) \) of pure iron expressed in J/(mol.K) as a function of temperature \(T \) (in K) is given as:

\[
C_p = 17.49 + 24.77 \times 10^{-3} T
\]

What is the change in the enthalpy of pure iron (in J/mol) when it is heated from 25°C to 700°C? ________

Q.54 The magnitude of the gradient of the function \(f(x, y) = x^2 + y^2 + xy + x \) evaluated at \((1, 1)\) is ________
Q.55 A glass fibre reinforced epoxy composite is made with 60 wt.% unidirectional continuous glass fibres. The elastic moduli of the glass fibre and the epoxy matrix are 72.5 and 2.4 GPa, respectively. What is the elastic modulus of this composite along the fibre direction, in GPa? The densities of glass fibre and epoxy are 2.58 g/cm³ and 1.14 g/cm³, respectively. _______
<table>
<thead>
<tr>
<th>Section</th>
<th>Q. No.</th>
<th>Key / Range</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>1</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>GA</td>
<td>2</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>GA</td>
<td>3</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>GA</td>
<td>4</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>GA</td>
<td>5</td>
<td>1300 to 1300</td>
<td>1</td>
</tr>
<tr>
<td>GA</td>
<td>6</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>GA</td>
<td>7</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>GA</td>
<td>8</td>
<td>180 to 180</td>
<td>2</td>
</tr>
<tr>
<td>GA</td>
<td>9</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>GA</td>
<td>10</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>1</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>2</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>3</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>4</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>5</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>6</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>7</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>8</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>9</td>
<td>19.95 to 20.05</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>10</td>
<td>3 to 3</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>11</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>12</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>13</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>14</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>15</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>16</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>17</td>
<td>350 to 350</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>18</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>19</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>20</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>21</td>
<td>5 to 5</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>22</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>23</td>
<td>B</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Q. No.</th>
<th>Key / Range</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT</td>
<td>24</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>25</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>MT</td>
<td>26</td>
<td>26.3 to 26.5</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>27</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>28</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>29</td>
<td>0.46 to 0.49</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>30</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>31</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>32</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>33</td>
<td>951 to 953</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>34</td>
<td>2.8 to 2.9</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>35</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>36</td>
<td>100 to 100</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>37</td>
<td>2 to 2</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>38</td>
<td>300 to 300</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>39</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>40</td>
<td>4.2 to 4.3</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>41</td>
<td>0.2 to 0.2</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>42</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>43</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>44</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>45</td>
<td>5 to 5</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>46</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>47</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>48</td>
<td>2.30 to 2.38</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>49</td>
<td>35 to 36</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>50</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>51</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>52</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>53</td>
<td>22380 to 22480</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>54</td>
<td>5 to 5</td>
<td>2</td>
</tr>
<tr>
<td>MT</td>
<td>55</td>
<td>30.0 to 30.5</td>
<td>2</td>
</tr>
</tbody>
</table>